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Abstract. In this work a systematic procedure is proposedsiimulating the conduction heat transfer procesa solid
with a strong dependence of the thermal condugtivitthe temperature. Such kind of inherently maali partial
differential equation, subjected to classical lineaundary conditions, will be solved with the afta Kirchoff
Transform by means of a sequence of very sinmp@dardiproblems. The proposed procedure providesxaet solution of
the problem and induces finite dimensional appretioms that can be used for computational simuleticSome typical
cases are simulated by means of a finite differeacheme.

Keywords: Temperature dependent thermal conductivity, Kirchoff transform, heat tran<fer, nonlinear equations
system.

1. Introduction

Most of the conduction heat transfer phenomenaleseribed under the assumption of temperature
independent thermal conductivity. Such hypothesimathematically convenient because, in generasgi
rise to linear partial differential equations. Nefeless, the thermal conductivity is always a terapure
dependent function. Many times, neglecting sucheddpnce (assuming constant thermal conductivitg), w
have an inadequate mathematical description ofghduction heat transfer process.

The main objective of this work is to provide aakle and systematic procedure for describing the
conduction heat transfer in a rigid solid, with perature dependent thermal conductivity, subjettidihear
boundary conditions (Newton'’s law of cooling). Thi®cedure is exact and employs only the tool&atlin
problems in which the thermal conductivity is asedno be a constant.

The first step consists of employing the Kircha#risform in order to change the original problem
into another one consisting of a linear partialfedéntial equation subjected to a nonlinear boundar
condition. The second step consists of regardirgg rtew problem as the limit of a sequence of linear
problems.

So, the problems with temperature dependent thezoraluctivity will be regarded as the limit of a
sequence whose elements are solution of lineatgmsh

2. Governing Equations

Let us consider a rigid, opaque and isotropic batdest with domain represented by bounded open

set Q) with boundary 0Q). The steady-state heat transfer process inside tbily is mathematically
described by the following elliptic partial differéal equation
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divikgradT)+q=0 in Q @)

where T, @ and k denote, respectively, the temperature field, titernal heat generation rate (per unit

volume) and the thermal conductivity. In this wdinke thermal conductivity is assumed to be a fumatibthe
local temperature. In other words,

k=Kk(T) 2)
Assuming that body boundary and the environment&xges energy according to Newton’s law of cooling,
the boundary conditions associated with equatipmai(@ given by

—(kgradT)n=h(T -T,) on 0Q (3)

in which N is the unit outward normal (defined a@i€2 ), h is the convection heat transfer coefficient and

T, is a temperature of reference
The resulting problem (nonlinear) is given by

diikgradT)+q=0 in Q @
—(kgradT)n=n(T-T,) on oQ

3. The Kirchoff Transform

Since the thermal conductivity is always positiawed, the new variabley (Kirchoff transform)
defined by

T N n
o= k(£)de=f(T) (5)
being an invertible function of . This definition allows us to write

gradwo=k grad T (6)

So, the original problem can be rewritten as folow

div(grade)+q=0 in Q

R (1)
—(gradw)n =h(f *(@)-T,) on oQ

where T = f’l(a)). Although above problem remains nonlinear, thislinearity takes place only on the

boundary, not in the partial differential equatidhis to be noticed that, since the thermal cotiditg is
everywhere positive,

dw dT
k>0 —>0 and — > 0 everywhe 8
7T o YW ®)

s0, the temperature is a strictly increasing functf @ .
For instance, if we have

{kl =constant if T<T,

k, =constant if T>T,
it is easy to show that

©)
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T

fa v L 1 1.1
f (ao)—|ao|{2k2 2kj+a{2kz+2kj+-r° (10)

4. Constructing the Solution from a Sequence of Liear Problems

The solution of

div(grade)+q=0 in Q
—(gradw)n = h(f Y(@)-T,) on oQ

(11)

can be represented by the limit of the nondecrgas'mquence[cl)o,CDl,CDZ,...] whose elements are
obtained from the solution of the linear probleratoly

div(gradeM)+E|:O in Q
—(gradd, , )n=a®,,,+F on oQ 21
f=h(f (@) -T,)~a®,

in which ¢ is a, sufficiently large, constant abl, = 0.

It is remarkable that, for each the function®, , is the unknown and the functiodD; is known.

So, f’l(CDi ) is always known in (12), being evaluated fromftiikowing equation

@) "
@ = [ "k (13)

For each spatial position, the root of the abowsatign is unique. This uniqueness is supporteddoyaon
8).

The constanix must be large enough for ensuring that, at angtdi€2, @, ,, > @, . In reference

[2] such result is proven as well as it is providedupper bound for the constaamt [3]. For the problem
considered in this work it is sufficient to choogesuch that

a> _h (14)
leN

where K, is the minimum value of the thermal conductivity.

5. Convergence

The limit of the sequencEfDO, D,,D,, ] , denoted here b{D_ exists and is, in fact, a solution of

the problem. To prove this assertion, let us bebowing that®  is a solution of (7). In other words

div(gradd, )+q=0 in Q
—(grad®_)n=h(f *(®,)-T,) on oQ

(15)
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Since S, is given by

ﬂwzh(fl(waJQJ—aQw (16)

we have that (12) and (15) coincide. 8b, is a solution. Now, taking into account that tlegence is
nondecreasing and has an upper bound, we ensuceriiergence, once that the solution of (15) beddng
the same space of the solutions of (12) for éaf#] e [5].

6. An Example

Let us consider the following problem (spherizatly with uniform heat generation, surrounded by
the same medium, with=1 andT_ =1 - in some system of units)

1d dT
——|r’k—|[|+1=0 for 0<r<1
redr dr
—kﬂ =T at r=1

dr
in which it is assumed thal represents an absolute temperature kre 3T + 2 . The solution is easily
reached and given by

17)

1/2

2
T__2, @‘r)+1 (18)
3 9

Now, let us employ the proposed procedure. Withkiinehoff transform, the problem yields

%i(ﬁ@j +1=0 for O<r<1
redr dr

A 1/2
—d—a):f‘l(a)):—g{ih@} at r=1
dr 3 19 3

The linear procedure for reaching the elemente®&equence is represented as follows
1d do,
——|r*—2||+1=0 for 0<r<1
redr dr

do

——d‘” =a®, ,+ at r=1 (20)
;

1/2
ﬂi :_g+[£+£:| _a(D
319 3

(19)

or, simply as

éi[ﬂ%j +1=0 for O<r<1
redr dr

1/2
_ dq)i+1 :aq)i+1_aq)i _24_[&4_&} at r=1
ar 319 3

Since the problem makes sense only or>0, we have thatk,,, >2. So, we can work with any

a >1/2. We shall usax = 3!
The general solution of equation

(21)
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dr

r

CDM:—E+CI+l for 0<r<1

{ii[ﬁ%ﬂ+1:0 for 0<r<1

where the constarf€, ,, for i >0, is obtained from the boundary condition. In otierds,

}:3[—}+Ci+1}—3[——1+q}——2+{
3 6 6 3

Then,

1 1 2
C,=C+=|1-,|=+=
i+1 C1 3|: 3 BQ:|

The constanC, is obtained from

1 4.1 _°
5_3[ 6+C1} = G

If we employ o = 20, then

1 1 2
C,=GC+—|1- |-+
=G 20{ 3 3Q}

and the constan€, is obtained from

1 20[——1+C1} = Clzil
3 6 60

4
—+

9

L)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

Table 1 presents a comparison between the valdamet forC, with two distinct values otx

a=3 a=20
I= C = C =
1 0.371083678318| 0.199585905322
2 0.450399853146| 0.215439507012
3 0.518403223696| 0.230908373418
4 0.577078085519| 0.246005928926
5 0.627951577215| 0.260744856563
10 0.800503112959| 0.329459272507
20 0.940194171974| 0.445715284244
50 0.998272514569| 0.679342555325
100 0.999995202718| 0.866108252119
500 0.999999985099 | 0.999842551009
1000 0.999999985099 | 0.999999949824

Table 1 — A comparison between results obtaineld wit= 3and ¢ = 20.

It can be proven tha, =1. Hence, the limit of the sequence is given by

2

)] :—%+1 for 0<r<«1

o0

The solutionw is exactly the limit of the sequence. Taking iat@ount that

(29)
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A 2 4 2[0 1/2
fHo)=T=-S4|=+— 30
(@) 3 [9 3 } (30)
we have the following result (coincident with #eact solution, previously obtained)
) 1/2
T:—E+ ﬂ+—2 _r_+1 (31)
319 3 6

7. A computational numerical simulation example

A computational support has been developed patellle mathematical modeling in order to
provide numerical results of the proposed methdith& programs were made in MATLAB. Now, a
computational simulation for a typical problem viik shown. The physical characteristics of the leralare
described by the following parameters: convectieathransfer coefficientt = 5, heat generationﬁ =10,
reference temperaturg, = 20. The conduction is processed in a rectangulapfite. The spatial domain is

described in a rectangular cartesian coordinat®isy The plate is represented by a rectangularesits
mesh for Finite Differences Method application, #imellinear equations system is solved by the GSefiel
iterative method. The temperature dependence dh#irenal conductivity is given by:

_Jla=45-T<21
Clk,=10>T>21

In this simulation we assume = 8. The following figures show the iterative evolutiof the simulation.
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Figure 1. first iteration result Figure 2. seventh iteration result
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Figure 3. thirteenth iteration result Figure 4. seventeenth iteration result
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Figure 5. twenty third iteration result Figure 6. thirtieth and final result
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Figure 7. plane dividing the temperature fieldvwo tregions of constant thermal conductivity
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8. Final remarks

The presented procedure proved to be a simplesfbeient subsidy for solving problems of
conduction heat transfer with temperature depenthenial conductivity, by means of classic tool éyed
on heat transfer linear problems, such as finiffierdinces.
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