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Abstract. In this work a systematic procedure is proposed for simulating the conduction heat transfer process in a solid 
with a strong dependence of the thermal conductivity on the temperature. Such kind of inherently nonlinear partial 
differential equation, subjected to classical linear boundary conditions, will be solved with the aid of a Kirchoff 
Transform by means of a sequence of  very simple linear problems. The proposed procedure provides the exact solution of 
the problem and induces finite dimensional approximations that can be used for computational simulations. Some typical 
cases are simulated by means of a finite difference scheme. 
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1. Introduction 
 

Most of the conduction heat transfer phenomena are described under the assumption of temperature 
independent thermal conductivity. Such hypothesis is mathematically convenient because, in general, gives 
rise to linear partial differential equations. Nevertheless, the thermal conductivity is always a temperature 
dependent function. Many times, neglecting such dependence (assuming constant thermal conductivity), we 
have an inadequate mathematical description of the conduction heat transfer process. 

The main objective of this work is to provide a reliable and systematic procedure for describing the 
conduction heat transfer in a rigid solid, with temperature dependent thermal conductivity, subjected to linear 
boundary conditions (Newton’s law of cooling). This procedure is exact and employs only the tools utilized in 
problems in which the thermal conductivity is assumed to be a constant. 

The first step consists of employing the Kirchoff transform in order to change the original problem 
into another one consisting of a linear partial differential equation subjected to a nonlinear boundary 
condition. The second step consists of regarding the new problem as the limit of a sequence of linear 
problems. 

So, the problems with temperature dependent thermal conductivity will be regarded as the limit of a 
sequence whose elements are solution of linear problems.  

 
2. Governing Equations 
 

Let us consider a rigid, opaque and isotropic body at rest with domain represented by bounded open 
set Ω  with boundary ∂Ω . The steady-state heat transfer process inside this body is mathematically 
described by the following elliptic partial differential equation 
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( ) 0=+
•

qkgradTdiv    in  Ω                                                                                                  (1) 
 

where T ,  
•

q  and k  denote, respectively, the temperature field, the internal heat generation rate (per unit 
volume) and the thermal conductivity. In this work the thermal conductivity is assumed to be a function of the 
local temperature. In other words, 

( )
^

k k T=                                                                                                                                (2) 
Assuming that body boundary and the environment exchanges energy according to Newton’s law of cooling, 
the boundary conditions associated with equation (1) are given by 
  

Ω∂−=− ∞    on   TThkgradT )()( n                                                                                         (3) 
 
in which n  is the unit outward normal (defined on ∂Ω ), h  is the convection heat transfer coefficient and 

T∞  is a temperature of reference 
 The resulting problem (nonlinear) is given by 
 

( )
Ω∂−=−

Ω=+

∞

•

   on   TThkgradT

   in   qkgradTdiv

)()(

0

n
                                                                                     (4) 

 
3. The Kirchoff Transform 
 
 Since the thermal conductivity is always positive-valued, the new variable ω  (Kirchoff transform) 
defined by 

( )
0

^ ^

( )
T

T
k d f Tω ξ ξ= =∫                                                                                                          (5) 

being an invertible function of T . This definition allows us to write  
 
grad k grad Tω =                                                                                                                 (6) 

So, the original problem can be rewritten as follows 
 

( )
Ω∂−=−

Ω=+

∞
−

•

   on   Tfhgrad

   in   qgraddiv

))(ˆ()(

0
1 ωω

ω

n
                                                                                   (7) 

 

where 
^

1( )T f ω−≡ . Although above problem remains nonlinear, this nonlinearity takes place only on the 
boundary, not in the partial differential equation. It is to be noticed that, since the thermal conductivity is 
everywhere positive, 

0 0 and 0 everywhere
d dT

k
dT d

ω
ω

> ⇒ > >  (8) 

so, the temperature is a strictly increasing function of ω . 
 For instance, if we have 

1 0

2 0

constant   if   

constant   if   

k T T
k

k T T

= <
= 

= ≥
                               (9) 

it is easy to show that 
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4. Constructing the Solution from a Sequence of Linear Problems 
 
 The solution of 
 

( )
Ω∂−=−

Ω=+

∞
−

•

   on   Tfhgrad

   in   qgraddiv

))(ˆ()(

0
1 ωω

ω

n
                                                                                                (11) 

 

can be represented by the limit of the nondecreasing sequence [ ]0 1 2, , ,...Φ Φ Φ  whose elements are 

obtained from the solution of the linear problems below 
 

( )

iii

iii

i

Tfh

   on   grad

   in   qgraddiv

Φ−−Φ=

Ω∂+Φ=Φ−

Ω=+Φ

∞
−

++

•

+
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))(ˆ(

)(

0

1

11

1

n                                                                                                     (12) 

 

in which α  is a, sufficiently large, constant and 0 0Φ ≡ .  

It is remarkable that, for each i , the function 1i+Φ  is the unknown and the function  iΦ  is known. 

So, ( )
^

1
if − Φ  is always known in (12), being evaluated from the following equation    

( ) ζζ dk
if

Ti ∫
Φ−

=Φ
)( ^1

^

0

                                                    (13) 

For each spatial position, the root of the above equation is unique. This uniqueness is supported by equation 
(8). 

 The constant α  must be large enough for ensuring that, at any point of Ω , 1i i+Φ ≥Φ . In reference 

[2] such result is proven as well as it is provided an upper bound for the constant α  [3]. For the problem 
considered in this work it is sufficient to choose α  such that  

MIN

h

k
α ≥                                                                              (14) 

where MINk  is the minimum value of the thermal conductivity.  

 
5. Convergence  
 

 The limit of the sequence [ ]0 1 2, , ,...Φ Φ Φ , denoted here by ∞Φ  exists and is, in fact, a solution of 

the problem. To prove this assertion, let us begin showing that ∞Φ  is a solution of (7). In other words 
 

( )
Ω∂−Φ=Φ−

Ω=+Φ

∞∞
−

∞

•

∞
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Since β∞  is given by 

( )
^

1h f Tβ α−
∞ ∞ ∞ ∞

 
= Φ − − Φ 

 
                                       (16) 

we have that (12) and (15) coincide. So, ∞Φ  is a solution. Now, taking into account that the sequence is 
nondecreasing and has an upper bound, we ensure the convergence, once that the solution of (15) belongs to 
the same space of the solutions of (12) for each i  [4] e [5].  
 
6. An Example 
 
 Let us consider the following problem  (spherical body with uniform heat generation, surrounded by 

the same medium, with 1h =  and 1T∞ =  - in some system of units) 

 

2
2

1
1 0 0 1

1

d dT
r k for r

r dr dr

dT
k T at r

dr

   + = ≤ <    

− = =

                                                                             (17) 

in which it is assumed that T  represents an absolute temperature and 3 2k T= +  . The solution is easily 
reached and given by  

( )
1/ 2

212
1

3 9

r
T

 −
 = − + +
  

                                                     (18) 

Now, let us employ the proposed procedure. With the Kirchoff transform, the problem  yields 

( )

2
2

1/ 2^
1

1
1 0 0 1

2 4 2
1

3 9 3

d d
r for r

r dr dr

d
f at r

dr

ω

ω ω
ω−

   + = ≤ <    

 − = = − + + =  

  (19) 

The linear procedure for reaching the elements of the sequence is represented as follows 

2 1
2

1
1

1/ 2

1
1 0 0 1

1

22 4
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i

i
i i

i
i i

dd
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+
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Φ
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or, simply as 

2 1
2

1/ 2

1
1

1
1 0 0 1

22 4
1

3 9 3

i

i i
i i

dd
r for r

r dr dr

d
at r

dr
α α

+

+
+

 Φ   + = ≤ <  
  

Φ Φ − = Φ − Φ − + + =  

 (21) 

Since the problem makes sense only for 0T > , we have that 2MINk > . So, we can work with any 

1/ 2α ≥ . We shall use 3α = ! 
 The general solution of equation  
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2 1
2

1
1 0 0 1idd

r for r
r dr dr

+ Φ   + = ≤ <  
  

                 (22) 

is  
2

1 1 0 1
6i i

r
C for r+ +Φ = − + ≤ <                                    (23) 

where the constant 1iC + , for 0i > , is obtained from the boundary condition. In other words,  
1/ 2

1

1 1 1 2 4 2 1
3 3

3 6 6 3 9 3 6i i iC C C+

      = − + − − + − + + − +           
                                            (24) 

Then,  

1

1 1 2
1

3 3 3i i iC C C+

 
= + − + 

 
                                            (25) 

The constant 1C  is obtained from 

1 1

1 1 5
3

3 6 18
C C

 = − + ⇒ =  
                                     (26) 

If we employ 20α = , then  

1

1 1 2
1

20 3 3i i iC C C+

 
= + − + 

 
                                        (27) 

and the constant 1C  is obtained from 

1 1

1 1 11
20

3 6 60
C C

 = − + ⇒ =  
                                     (28) 

Table 1 presents a comparison between the values obtained for iC  with two distinct values of α  

 
 3α =  20α =  

i =  
iC =  iC =  

1 
2 
3 
4 
5 
10 
20 
50 
100 
500 
1000 

0.371083678318 
0.450399853146 
0.518403223696 
0.577078085519 
0.627951577215 
0.800503112959 
0.940194171974 
0.998272514569 
0.999995202718 
0.999999985099 
0.999999985099 

0.199585905322 
0.215439507012 
0.230908373418 
0.246005928926 
0.260744856563 
0.329459272507 
0.445715284244 
0.679342555325 
0.866108252119 
0.999842551009 
0.999999949824 

 
Table 1 – A comparison between results obtained with 3α = and 20α = . 

 

It can be proven that 1C∞ = . Hence, the limit of the sequence is given by 
2

1 0 1
6

r
for r∞Φ = − + ≤ <                                         (29) 

 The solution ω  is exactly the limit of the sequence. Taking into account that 
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( )
1/ 2^

1 2 4 2
3 9 3

f T
ω
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                                   (30) 

 we have the following result (coincident with the exact solution, previously obtained) 
1/ 2

22 4 2
1

3 9 3 6

r
T

  
= − + + − +  

  
                                     (31) 

 
7. A computational numerical simulation example 
 

A computational support has been developed parallel to the mathematical modeling in order to 
provide numerical results of the proposed method. All the programs were made in MATLAB. Now, a 
computational simulation for a typical problem will be shown. The physical characteristics of the problem are 

described by the following parameters: convection heat transfer coefficient 5=h , heat generation 10
.
=q , 

reference temperature 20=∞T . The conduction is processed in a rectangular flat plate. The spatial domain is 
described in a rectangular cartesian coordinates system. The plate is represented by a rectangular elements 
mesh for Finite Differences Method application, and the linear equations system is solved by the Gauss-Seidel 
iterative method. The temperature dependence of the thermal conductivity is given by: 
 





≥→=

<→=
=

2110

2145

2

1

Tk

Tk
k  

 
In this simulation we assume 8=α . The following figures show the iterative evolution of the simulation.  
 

 
 

Figure 1. first iteration result 
 

 
 

Figure 2. seventh iteration result 
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Figure 3. thirteenth iteration result 
 

 
 

Figure 5. twenty third iteration result 

 
 

Figure 4. seventeenth iteration result 
 

 
 

Figure 6. thirtieth and final result 
 

 
 

Figure 7. plane dividing the temperature field in two regions of constant thermal conductivity 
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8. Final remarks 
 

The presented procedure proved to be a simple, but efficient subsidy for solving problems of 
conduction heat transfer with temperature dependent thermal conductivity, by means of classic tool employed 
on heat transfer linear problems, such as finite differences. 
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